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For certain digital signal processing applications, it is beneficial to work with IQ sample in the polar rather 

than the rectangular format. To achieve the translation into the polar format, we need to compute the atan2 

operation to produce the phase of the IQ sample. A very clever technique is used to calculate the angle 

component of a complex IQ value in digital hardware. This technique, called the cordic atan2 algorithm, is 

the topic of this document and it makes due without hardware multipliers or ROM tables.  

 

The Goal of the atan2 Function 

The figure below shows two points P1 and P2 in the coordinate plane together with their associated angles. 

It is the objective of the atan2 algorithm to calculate the angle of a Cartesian coordinate, which in this case 

represents an IQ sample. The atan2 function applied to the input samples 1+2j and -2-2j must yield angles 

63 and -135 degrees respectively. 

 

 

Figure 1: The Atan2 Operation finds the Angle of an IQ Sample 

 

Whereas the hardware implementation of most trigonometric functions involve the use of potentially large 

ROM look up tables, the atan2 function can take advantage of the clever cordic technique, which allows us 

to primarily get away with simple addition and comparison operations. The figure below shows the internal 

function block arrangement of the cordic atan2 block. 
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Figure 2: The Four Processing Steps of the Cordic Atan2 Algorithm 
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At its core, the cordic algorithm executes a series of preset rotations to determine the phase of the Cartesian 

coordinate. As will become clear soon, it is easiest to execute these rotations when the IQ coordinate resides 

in quadrant one. For this reason, the first two blocks determine where in coordinate system the sample 

resides and then map it to an intermediate position in the first quadrant. The angle of this intermediate 

position is now determined via several rotations in the third block, whereas the last block compensates for 

the earlier rotation to quadrant one. 

 

Computing the Angle of a Point in Quadrant One 

To understand why a series of rotation allows us to figure out the angle of a Cartesian coordinate in quadrant 

one, let’s first examine what rotation looks like in terms of complex numbers. Usually, complex rotation 

requires the use of 4 multiplications as seen in the mathematical derivation below. One of our goals is to 

achieve similar rotations without using multiplication. Below, we rotate a complex number P = X + jY by an 

arbitrary angle, θ, to a new position P1 = X1 + jY1. 

                                                    𝑃1 = 𝑃 ∙ 𝑒𝑗𝜃 

                                                    𝑃1 = (𝑋 + 𝑗𝑌) ∙ (cos(𝜃) + 𝑗𝑠𝑖𝑛(𝜃)) 

                                                    𝑃1 = 𝑋 ∙ cos(𝜃) − 𝑌 ∙ sin(𝜃) + 𝑗(𝑌 ∙ cos(𝜃) + 𝑋 ∙ 𝑠𝑖𝑛(𝜃))                   (1) 

The real and imaginary portions of P1 can be written separately as X1 and Y1. 

𝑋1 = 𝑋 ∙ cos(𝜃) − 𝑌 ∙ sin⁡(𝜃) 

𝑌1 = 𝑌 ∙ cos(𝜃) + 𝑋 ∙ sin⁡(𝜃) 

We now factor the cosine term out of both equations to yield the following. 

𝑋1 = cos(𝜃) ∙ ( 𝑋 − 𝑌 ∙ 𝑡𝑎𝑛⁡(𝜃)) 

𝑌1 = cos(𝜃) ∙ ( 𝑌 + 𝑋 ∙ 𝑡𝑎𝑛⁡(𝜃)) 

 

𝑃1 = cos(𝜃)[(𝑋 − 𝑌 ∙ 𝑡𝑎𝑛⁡(𝜃)) + 𝑗(𝑌 + 𝑋 ∙ tan(𝜃))] 

As will become clear soon, the output coordinate of each individual rotation in the Cordic core does not 

need to produce an output coordinate with the same magnitude. To make our life easier, we simply replace 

the cos(θ) expression by one to arrive at the following expression. 

𝑃1 ≈ 𝑋 − 𝑌 ∙ 𝑡𝑎𝑛(𝜃) 

                                                                        +𝑗(𝑌 − 𝑋 ∙ 𝑡𝑎𝑛⁡(𝜃))                                                           (2) 

Notice that compared to equation (1) we have reduced the number of multiplication to two at the expense 

of preserving the exact magnitude of the rotated coordinate. However, if we restrict the angles of rotation 

such that tan(θ) can only be ±1, ±0.5, ±0.25, ±0.125 … etc., then the remaining multiplications reduce to 

simple integer shifting operation and sign changes. These restrictions limit the angles we may use for the 

rotations to those in the following table. In block three, we cascade several of these rotation until we have 

managed to rotate the original point P right onto the positive X axis. 

 

 

 

 



 

i -2-i Angle = atan(-2-i) 

0 -1.00000 -45.00 

1 -0.50000 -26.565051 

2 -0.25000 -14.036243 

3 -0.12500 -7.125016 

4 -0.06250 -3.576334 

5 -0.03125 -1.789910 

6 -0.015625 -0.895174 

7 -.007813 -0.447614 

8 -.003906 -0.223811 

9 -1/512 -0.1119 

Figure 3: Allowed Rotation for Cordic Pipeline with 10 Stages 

 

Finding the Angle via Iterative Rotations 

The figure below illustrates point P = [1, 2.5] featuring an angle of atan2(P) = 68.2 degrees as well at the 

iterative rotation pipeline that we employ in block three. The first stage of the pipeline looks at the point, P, 

and determines whether it can be rotated by -45 degrees without overshooting and producing a resulting 

coordinate in quadrant four. It does this by checking whether Q is larger than I. If it is, then it rotates P=X+jY 

to P1=X1+jY1 via the following equation. 
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Figure 4: Example Rotation of Point P = [1, 2.5] in Block Three of The Cordic Atan2 Algorithm 

 

The figure shows the rotation by angle A = -45 degrees that produced point P1. The second cordic rotation 

block now checks to see whether the angle of P1 is greater than 26.565 degrees and will decide to rotate P1 
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if necessary. It does the check by finding out whether Y1 is larger than 2X1. In this case we decide not to 

rotate which sets P2 = P1.  

As can clearly be seen, the angle of P1 is larger than 14.036 degrees and a rotation by -14.036 degrees is 

necessary. The algorithm detects that the angle of P1 is larger that 14.036 degrees by realizing that Y1 is 

larger than 4X1. 

𝑋3 = 𝑋2 − 𝑌2 ∙ tan⁡(−14.036) ⁡= 𝑋2 + 𝑌2 ∙
1

4
⁡ 

𝑌3 = 𝑌2 + 𝑋2 ∙ tan⁡(−14.036) ⁡= 𝑌2 − 𝑋2 ∙
1

4
 

We thus proceed through as many cordic rotation elements as we need to achieve the needed accuracy. This 

algorithm uses 10 potential rotations to achieve a maximum phase error of .1119 degrees. 

 

 

Block 1: Quadrant Determination 

Since the cordic rotation pipeline of block three prefers to process points in the first quadrant, those in other 

quadrants must first be mapped into the first. We determine the quadrant of a point P = X + jY via the 

following test. 

 

 

 

Figure 5: Mapping of Points in Quadrants 2, 3, and 4 to Quadrant1 
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Var1 = 0; 
Var2 = 0; 
if (X >= 0); Var1 = 1; end; 
if (Y >= 0); Var2 = 1; end; 
  
if(Var1 == 1 && Var2 == 1); Quadrant = 1; end; 
if(Var1 == 0 && Var2 == 1); Quadrant = 2; end; 
if(Var1 == 0 && Var2 == 0); Quadrant = 3; end; 
if(Var1 == 1 && Var2 == 0); Quadrant = 4; end; 

 



Block 2: Mapping to Quadrant One 

The figure above illustrates how IQ samples in quadrants 2, 3, and 4 are mapped to quadrant 1. Points PA, 

PB and PC all map onto P1. The mapping process is summarized in the next MatLab section shown below. 

 

 

Block 3. Iterative Rotations 

Check the final MatLab code for the iterative rotations.  

 

 

Block 4. The Final Normalization Step 

The last step in the cordic atan2() algorithm is the normalization step. This step adds the additional angle 

was lost during the initial mapping step to quadrant one. 

  

 

 

 

 

 

 

 

 

 

 

 

 

switch(Quadrant) 
    case 1 
        X1 = X; 
        Y1 = Y; 
    case 2 
        X1 = Y; 
        Y1 = -X; 
    case 3 
        X1 = -X; 
        Y1 = -Y; 
    case 4 
        X1 = -Y; 
        Y1 = X; 
end 

 

switch(Quadrant) 
    case 1 
        Angle = TotalRotation; 
    case 2 
        Angle = TotalRotation + pi/2; 
    case 3 
        Angle = TotalRotation - pi; 
    case 4 
        Angle = TotalRotation - pi/2; 
end 

 



Full MatLab Code 

 

function Angle = CordicAtan2(X, Y) 
  
%% Block 1. Quadrant Determination  
Var1 = 0; 
Var2 = 0; 
if (X >= 0); Var1 = 1; end; 
if (Y >= 0); Var2 = 1; end; 
if(Var1 == 1 && Var2 == 1); Quadrant = 1; end; 
if(Var1 == 0 && Var2 == 1); Quadrant = 2; end; 
if(Var1 == 0 && Var2 == 0); Quadrant = 3; end; 
if(Var1 == 1 && Var2 == 0); Quadrant = 4; end; 
  
%% Block 2. Mapping to Quadrant 1 
switch(Quadrant) 
    case 1 
        X1 = X; 
        Y1 = Y; 
    case 2 
        X1 = Y;  
        Y1 = -X; 
    case 3 
        X1 = -X;  
        Y1 = -Y; 
    case 4 
        X1 = -Y;   
        Y1 = X; 
end 
  
%% Block 3. 10 Stage Cordic Rotation 
TotalRotation = 0; 
  
if(Y1 >= X1)                               %% Stage 1 
    X2 = X1 + Y1;    Y2 = Y1 - X1; 
    TotalRotation = TotalRotation + 45*pi/180; 
else 
    X2 = X1;    Y2 = Y1; 
end 
  
if(2*Y2 >= X2)                             %% Stage 2 
    X3 = X2 + Y2/2;   Y3 = Y2 - X2/2; 
    TotalRotation = TotalRotation + 26.56505*pi/180;     
else 
    X3 = X2;          Y3 = Y2; 
end 

  
if(4*Y3 >= X3)                             %% Stage 3 
    X4 = X3 + Y3/4;    Y4 = Y3 - X3/4; 
    TotalRotation = TotalRotation + 14.03624*pi/180;     
else 
    X4 = X3;           Y4 = Y3; 
end 
  
if(8*Y4 >= X4)                             %% Stage 4 
    X5 = X4 + Y4/8;    Y5 = Y4 - X4/8; 
    TotalRotation = TotalRotation + 7.12502*pi/180;     
else 
    X5 = X4;           Y5 = Y4; 
end 
  
if(16*Y5 >= X5)                            %% Stage 5 
    X6 = X5 + Y5/16;   Y6 = Y5 - X5/16; 
    TotalRotation = TotalRotation + 3.57633*pi/180;     
else 

     



 

 

if(32*Y6 >= X6)                            %% Stage 6 
    X7 = X6 + Y6/32;   Y7 = Y6 - X6/32; 
    TotalRotation = TotalRotation + 1.78991*pi/180;     
else 
    X7 = X6;           Y7 = Y6; 
end 
  
if(64*Y7 >= X7)                            %% Stage 7 
    X8 = X7 + Y7/64;   Y8 = Y7 - X7/64; 
    TotalRotation = TotalRotation + 0.89517*pi/180;     
else 
    X8 = X7;           Y8 = Y7; 
end 
  
if(128*Y8 >= X8)                           %% Stage 8 
    X9 = X8 + Y8/128;  Y9 = Y8 - X8/128; 
    TotalRotation = TotalRotation + 0.44761*pi/180;     
else 
    X9 = X8;           Y9 = Y8; 
end 
  
if(256*Y9 >= X9)                           %% Stage 9 
    X10 = X9 + Y8/256;  Y10 = Y9 - X8/256; 
    TotalRotation = TotalRotation + 0.22381*pi/180;     
else 
    X10 = X9;           Y10 = Y9; 
end 
  
if(512*Y10 >= X10)                         %% Stage 10 
    TotalRotation = TotalRotation + 0.11191*pi/180;     
end 
  
  
  
%% Block 4. Normalization Step 
switch(Quadrant)  
    case 1;        Angle = TotalRotation; 
    case 2;        Angle = TotalRotation + pi/2; 
    case 3;        Angle = TotalRotation - pi; 
    case 4;        Angle = TotalRotation - pi/2; 
end 

 

 


