
An Overview of the Atan2 Cordic Implementation in Digital Hardware

Document: 94

 www.signal-processing.net

andreas_dsp@hotmail.com

Author: Andreas Schwarzinger

Date: November 16, 2019

For certain digital signal processing applications, it is beneficial to work with IQ sample in the polar rather

than the rectangular format. To achieve the translation into the polar format, we need to compute the atan2

operation to produce the phase of the IQ sample. A very clever technique is used to calculate the angle

component of a complex IQ value in digital hardware. This technique, called the cordic atan2 algorithm, is

the topic of this document and it makes due without hardware multipliers or ROM tables.

The Goal of the atan2 Function

The figure below shows two points P1 and P2 in the coordinate plane together with their associated angles.

It is the objective of the atan2 algorithm to calculate the angle of a Cartesian coordinate, which in this case

represents an IQ sample. The atan2 function applied to the input samples 1+2j and -2-2j must yield angles

63 and -135 degrees respectively.

Figure 1: The Atan2 Operation finds the Angle of an IQ Sample

Whereas the hardware implementation of most trigonometric functions involve the use of potentially large

ROM look up tables, the atan2 function can take advantage of the clever cordic technique, which allows us

to primarily get away with simple addition and comparison operations. The figure below shows the internal

function block arrangement of the cordic atan2 block.

Quadrant

Determination

Move Input

Point to

Quadrant 1

Use Iterative

Rotations

Normalize

back to

Original

Quadrant

I + jQ angle

Block1 Block2 Block3 Block4

Figure 2: The Four Processing Steps of the Cordic Atan2 Algorithm

Quadrant 1Quadrant 2

Quadrant 3 Quadrant 4

θ=63o

θ=-135o

P1=1+j2

P2=-2-j2

real

imag

atan2

Block

I+jQ

or

X+jY
Phase

http://www.signal-processing.net/
mailto:andreas_dsp@hotmail.com

At its core, the cordic algorithm executes a series of preset rotations to determine the phase of the Cartesian

coordinate. As will become clear soon, it is easiest to execute these rotations when the IQ coordinate resides

in quadrant one. For this reason, the first two blocks determine where in coordinate system the sample

resides and then map it to an intermediate position in the first quadrant. The angle of this intermediate

position is now determined via several rotations in the third block, whereas the last block compensates for

the earlier rotation to quadrant one.

Computing the Angle of a Point in Quadrant One

To understand why a series of rotation allows us to figure out the angle of a Cartesian coordinate in quadrant

one, let’s first examine what rotation looks like in terms of complex numbers. Usually, complex rotation

requires the use of 4 multiplications as seen in the mathematical derivation below. One of our goals is to

achieve similar rotations without using multiplication. Below, we rotate a complex number P = X + jY by an

arbitrary angle, θ, to a new position P1 = X1 + jY1.

 𝑃1 = 𝑃 ∙ 𝑒𝑗𝜃

 𝑃1 = (𝑋 + 𝑗𝑌) ∙ (cos(𝜃) + 𝑗𝑠𝑖𝑛(𝜃))

 𝑃1 = 𝑋 ∙ cos(𝜃) − 𝑌 ∙ sin(𝜃) + 𝑗(𝑌 ∙ cos(𝜃) + 𝑋 ∙ 𝑠𝑖𝑛(𝜃)) (1)

The real and imaginary portions of P1 can be written separately as X1 and Y1.

𝑋1 = 𝑋 ∙ cos(𝜃) − 𝑌 ∙ sin⁡(𝜃)

𝑌1 = 𝑌 ∙ cos(𝜃) + 𝑋 ∙ sin⁡(𝜃)

We now factor the cosine term out of both equations to yield the following.

𝑋1 = cos(𝜃) ∙ (𝑋 − 𝑌 ∙ 𝑡𝑎𝑛⁡(𝜃))

𝑌1 = cos(𝜃) ∙ (𝑌 + 𝑋 ∙ 𝑡𝑎𝑛⁡(𝜃))

𝑃1 = cos(𝜃)[(𝑋 − 𝑌 ∙ 𝑡𝑎𝑛⁡(𝜃)) + 𝑗(𝑌 + 𝑋 ∙ tan(𝜃))]

As will become clear soon, the output coordinate of each individual rotation in the Cordic core does not

need to produce an output coordinate with the same magnitude. To make our life easier, we simply replace

the cos(θ) expression by one to arrive at the following expression.

𝑃1 ≈ 𝑋 − 𝑌 ∙ 𝑡𝑎𝑛(𝜃)

 +𝑗(𝑌 − 𝑋 ∙ 𝑡𝑎𝑛⁡(𝜃)) (2)

Notice that compared to equation (1) we have reduced the number of multiplication to two at the expense

of preserving the exact magnitude of the rotated coordinate. However, if we restrict the angles of rotation

such that tan(θ) can only be ±1, ±0.5, ±0.25, ±0.125 … etc., then the remaining multiplications reduce to

simple integer shifting operation and sign changes. These restrictions limit the angles we may use for the

rotations to those in the following table. In block three, we cascade several of these rotation until we have

managed to rotate the original point P right onto the positive X axis.

i -2-i Angle = atan(-2-i)

0 -1.00000 -45.00

1 -0.50000 -26.565051

2 -0.25000 -14.036243

3 -0.12500 -7.125016

4 -0.06250 -3.576334

5 -0.03125 -1.789910

6 -0.015625 -0.895174

7 -.007813 -0.447614

8 -.003906 -0.223811

9 -1/512 -0.1119

Figure 3: Allowed Rotation for Cordic Pipeline with 10 Stages

Finding the Angle via Iterative Rotations

The figure below illustrates point P = [1, 2.5] featuring an angle of atan2(P) = 68.2 degrees as well at the

iterative rotation pipeline that we employ in block three. The first stage of the pipeline looks at the point, P,

and determines whether it can be rotated by -45 degrees without overshooting and producing a resulting

coordinate in quadrant four. It does this by checking whether Q is larger than I. If it is, then it rotates P=X+jY

to P1=X1+jY1 via the following equation.

1

1

tan(45) 1

 tan(45) 1

X X Y X Y

Y Y X Y X

= −  − = + 

= +  − = − 

Figure 4: Example Rotation of Point P = [1, 2.5] in Block Three of The Cordic Atan2 Algorithm

The figure shows the rotation by angle A = -45 degrees that produced point P1. The second cordic rotation

block now checks to see whether the angle of P1 is greater than 26.565 degrees and will decide to rotate P1

1

2

3

31 2 4

45o

26.565o

14.036o

7.125o

P→ 68.2o

P1→ 23.2o

P3→ 9.163o

Rotate by

-45

degrees if

needed

P

Rotate by

-26.565

degrees if

needed

Rotate by

-0.1119

degrees if

needed
P1 P2

P10

Rotate by

-14.036

degrees if

needed

Y

X

P3

if necessary. It does the check by finding out whether Y1 is larger than 2X1. In this case we decide not to

rotate which sets P2 = P1.

As can clearly be seen, the angle of P1 is larger than 14.036 degrees and a rotation by -14.036 degrees is

necessary. The algorithm detects that the angle of P1 is larger that 14.036 degrees by realizing that Y1 is

larger than 4X1.

𝑋3 = 𝑋2 − 𝑌2 ∙ tan⁡(−14.036) ⁡= 𝑋2 + 𝑌2 ∙
1

4
⁡

𝑌3 = 𝑌2 + 𝑋2 ∙ tan⁡(−14.036) ⁡= 𝑌2 − 𝑋2 ∙
1

4

We thus proceed through as many cordic rotation elements as we need to achieve the needed accuracy. This

algorithm uses 10 potential rotations to achieve a maximum phase error of .1119 degrees.

Block 1: Quadrant Determination

Since the cordic rotation pipeline of block three prefers to process points in the first quadrant, those in other

quadrants must first be mapped into the first. We determine the quadrant of a point P = X + jY via the

following test.

Figure 5: Mapping of Points in Quadrants 2, 3, and 4 to Quadrant1

Quadrant 1Quadrant 2

Quadrant 3 Quadrant 4

P1=X+jY

real

imag

PA

PB

PC

Var1 = 0;
Var2 = 0;
if (X >= 0); Var1 = 1; end;
if (Y >= 0); Var2 = 1; end;

if(Var1 == 1 && Var2 == 1); Quadrant = 1; end;
if(Var1 == 0 && Var2 == 1); Quadrant = 2; end;
if(Var1 == 0 && Var2 == 0); Quadrant = 3; end;
if(Var1 == 1 && Var2 == 0); Quadrant = 4; end;

Block 2: Mapping to Quadrant One

The figure above illustrates how IQ samples in quadrants 2, 3, and 4 are mapped to quadrant 1. Points PA,

PB and PC all map onto P1. The mapping process is summarized in the next MatLab section shown below.

Block 3. Iterative Rotations

Check the final MatLab code for the iterative rotations.

Block 4. The Final Normalization Step

The last step in the cordic atan2() algorithm is the normalization step. This step adds the additional angle

was lost during the initial mapping step to quadrant one.

switch(Quadrant)
 case 1
 X1 = X;
 Y1 = Y;
 case 2
 X1 = Y;
 Y1 = -X;
 case 3
 X1 = -X;
 Y1 = -Y;
 case 4
 X1 = -Y;
 Y1 = X;
end

switch(Quadrant)
 case 1
 Angle = TotalRotation;
 case 2
 Angle = TotalRotation + pi/2;
 case 3
 Angle = TotalRotation - pi;
 case 4
 Angle = TotalRotation - pi/2;
end

Full MatLab Code

function Angle = CordicAtan2(X, Y)

%% Block 1. Quadrant Determination
Var1 = 0;
Var2 = 0;
if (X >= 0); Var1 = 1; end;
if (Y >= 0); Var2 = 1; end;
if(Var1 == 1 && Var2 == 1); Quadrant = 1; end;
if(Var1 == 0 && Var2 == 1); Quadrant = 2; end;
if(Var1 == 0 && Var2 == 0); Quadrant = 3; end;
if(Var1 == 1 && Var2 == 0); Quadrant = 4; end;

%% Block 2. Mapping to Quadrant 1
switch(Quadrant)
 case 1
 X1 = X;
 Y1 = Y;
 case 2
 X1 = Y;
 Y1 = -X;
 case 3
 X1 = -X;
 Y1 = -Y;
 case 4
 X1 = -Y;
 Y1 = X;
end

%% Block 3. 10 Stage Cordic Rotation
TotalRotation = 0;

if(Y1 >= X1) %% Stage 1
 X2 = X1 + Y1; Y2 = Y1 - X1;
 TotalRotation = TotalRotation + 45*pi/180;
else
 X2 = X1; Y2 = Y1;
end

if(2*Y2 >= X2) %% Stage 2
 X3 = X2 + Y2/2; Y3 = Y2 - X2/2;
 TotalRotation = TotalRotation + 26.56505*pi/180;
else
 X3 = X2; Y3 = Y2;
end

if(4*Y3 >= X3) %% Stage 3
 X4 = X3 + Y3/4; Y4 = Y3 - X3/4;
 TotalRotation = TotalRotation + 14.03624*pi/180;
else
 X4 = X3; Y4 = Y3;
end

if(8*Y4 >= X4) %% Stage 4
 X5 = X4 + Y4/8; Y5 = Y4 - X4/8;
 TotalRotation = TotalRotation + 7.12502*pi/180;
else
 X5 = X4; Y5 = Y4;
end

if(16*Y5 >= X5) %% Stage 5
 X6 = X5 + Y5/16; Y6 = Y5 - X5/16;
 TotalRotation = TotalRotation + 3.57633*pi/180;
else

if(32*Y6 >= X6) %% Stage 6
 X7 = X6 + Y6/32; Y7 = Y6 - X6/32;
 TotalRotation = TotalRotation + 1.78991*pi/180;
else
 X7 = X6; Y7 = Y6;
end

if(64*Y7 >= X7) %% Stage 7
 X8 = X7 + Y7/64; Y8 = Y7 - X7/64;
 TotalRotation = TotalRotation + 0.89517*pi/180;
else
 X8 = X7; Y8 = Y7;
end

if(128*Y8 >= X8) %% Stage 8
 X9 = X8 + Y8/128; Y9 = Y8 - X8/128;
 TotalRotation = TotalRotation + 0.44761*pi/180;
else
 X9 = X8; Y9 = Y8;
end

if(256*Y9 >= X9) %% Stage 9
 X10 = X9 + Y8/256; Y10 = Y9 - X8/256;
 TotalRotation = TotalRotation + 0.22381*pi/180;
else
 X10 = X9; Y10 = Y9;
end

if(512*Y10 >= X10) %% Stage 10
 TotalRotation = TotalRotation + 0.11191*pi/180;
end

%% Block 4. Normalization Step
switch(Quadrant)
 case 1; Angle = TotalRotation;
 case 2; Angle = TotalRotation + pi/2;
 case 3; Angle = TotalRotation - pi;
 case 4; Angle = TotalRotation - pi/2;
end

